145 research outputs found

    LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.

    Get PDF
    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu)

    Gray Wolves as Climate Change Buffers in Yellowstone

    Get PDF
    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change

    Habitat fragmentation reduces survival and drives source–sink dynamics for a large carnivore

    Get PDF
    Rigorous understanding of how environmental conditions impact population dynamics is essential for species conservation, especially in mixed-use landscapes where source–sink dynamics may be at play. Conservation of large carnivore populations in fragmented, human-dominated landscapes is critical for their long-term persistence. However, living in human-dominated landscapes comes with myriad costs, including direct anthropogenic mortality and sublethal energetic costs. How these costs impact individual fitness and population dynamics are not fully understood, partly due to the difficulty in collecting long-term demographic data for these species. Here, we analyzed an 11-year dataset on puma (Puma concolor) space use, mortality, and reproduction in the Santa Cruz Mountains, California, USA, to quantify how living in a fragmented landscape impacts individual survival and population dynamics. Long-term exposure to housing density drove mortality risk for female pumas, resulting in an 18-percentage-point reduction in annual survival for females in exurban versus remote areas. While the overall population growth rate appeared stable, reduced female survival in more developed areas resulted in source–sink dynamics across the study area, with 42.1% of the Santa Cruz Mountains exhibiting estimated population growth rates \u3c1. Since habitat selection is often used as a proxy for habitat quality, we also assessed whether puma habitat selection predicted source and sink areas. Patterns of daytime puma habitat selection predicted source areas, while time-of-day-independent habitat selection performed less well as a proxy. These results illuminate the individual- and population-level consequences of habitat fragmentation for large carnivores, illustrating that habitat fragmentation can produce source– sink dynamics that may not be apparent from other metrics of habitat quality. Locally, conserving high-quality source habitat within the Santa Cruz Mountains is necessary to support long-term puma population persistence. More broadly, source–sink dynamics may at play for other carnivore populations in similar fragmented systems, and linking landscape condition

    Humans, but not their dogs, displace pumas from their kills: An experimental approach

    Get PDF
    Domestic dogs are the most abundant large carnivore on the planet, and their ubiquity has led to concern regarding the impacts of dogs as predators of and competitors with native wildlife. If native large carnivores perceive dogs as threatening, impacts could extend to the community level by altering interactions between large carnivores and their prey. Dog impacts may be further exacerbated if these human-associated predators are also perceived as indicators of risk from humans. However, observational approaches used to date have led to ambiguity regarding the effects of dog presence on wildlife. We experimentally quantified dog impacts on the behavior of a native large carnivore, presenting playbacks of dog vocalizations to pumas in central California. We show that the perceived presence of dogs has minimal impacts on puma behavior at their kill sites, and is no more likely to affect total feeding time at kills than non-threatening controls. We previously demonstrated that pumas exhibit strong responses to human cues, and here show that perceived risk from human presence far exceeds that from dogs. Our results suggest that protected areas management policies that restrict dogs but permit human access may in some cases be of limited value for large carnivores

    How Climate Impacts the Composition of Wolf-Killed Elk in Northern Yellowstone National Park

    Get PDF
    While the functional response of predators is commonly measured, recent work has revealed that the age and sex composition of prey killed is often a better predictor of prey population dynamics because the reproductive value of adult females is usually higher than that of males or juveniles. Climate is often an important mediating factor in determining the composition of predator kills, but we currently lack a mechanistic understanding of how the multiple facets of climate interact with prey abundance and demography to influence the composition of predator kills. Over 20 winters, we monitored 17 wolf packs in Yellowstone National Park and recorded the sex, age and nutritional condition of kills of their dominant prey—elk—in both early and late winter periods when elk are in relatively good and relatively poor condition, respectively. Nutritional condition (as indicated by per cent marrow fat) of wolf‐killed elk varied markedly with summer plant productivity, snow water equivalent (SWE) and winter period. Moreover, marrow was poorer for wolf‐killed bulls and especially for calves than it was for cows. Wolf prey composition was influenced by a complex set of climatic and endogenous variables. In early winter, poor plant growth in either year t or t − 1, or relatively low elk abundance, increased the odds of wolves killing bulls relative to cows. Calves were most likely to get killed when elk abundance was high and when the forage productivity they experienced in utero was poor. In late winter, low SWE and a relatively large elk population increased the odds of wolves killing calves relative to cows, whereas low SWE and poor vegetation productivity 1 year prior together increased the likelihood of wolves killing a bull instead of a cow. Since climate has a strong influence on whether wolves prey on cows (who, depending on their age, are the key reproductive components of the population) or lower reproductive value of calves and bulls, our results suggest that climate can drive wolf predation to be more or less additive from year to year

    Global Population Dynamics and Hot Spots of Response to Climate Change

    Get PDF
    Understanding how biotic and abiotic factors influence the abundance and distribution of organisms has become more important with the growing awareness of the ecological consequences of climate change. In this article, we outline an approach that complements bioclimatic envelope modeling in quantifying the effects of climate change at the species level. The global population dynamics approach, which relies on distribution-wide, data-driven analyses of dynamics, goes beyond quantifying biotic interactions in population dynamics to identify hot spots of response to climate change. Such hot spots highlight populations or locations within species\u27 distributions that are particularly sensitive to climate change, and identification of them should focus conservation and management efforts. An important result of the analyses highlighted here is pronounced variation at the species level in the strength and direction of population responses to warming. Although this variation complicates species-level predictions of responses to climate change, the global population dynamics approach may improve our understanding of the complex implications of climate change for species persistence or extinction

    Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web

    Get PDF
    Coastal marine atmospheric fog has recently been implicated as a potential source of ocean-derived monomethylmercury (MMHg) to coastal terrestrial ecosystems through the process of sea-to-land advection of foggy air masses followed by wet deposition. This study examined whether pumas (Puma concolor) in coastal central California, USA, and their associated food web, have elevated concentrations of MMHg, which could be indicative of their habitat being in a region that is regularly inundated with marine fog. We found that adult puma fur and fur-normalized whiskers in our marine fog-influenced study region had a mean (±SE) total Hg (THg) (a convenient surrogate for MMHg) concentration of 1544 ± 151 ng g−1 (N = 94), which was three times higher (P < 0.01) than mean THg in comparable samples from inland areas of California (492 ± 119 ng g−1, N = 18). Pumas in California eat primarily black-tailed and/or mule deer (Odocoileus hemionus), and THg in deer fur from the two regions was also significantly different (coastal 28.1 ± 2.9, N = 55, vs. inland 15.5 ± 1.5 ng g−1, N = 40). We suggest that atmospheric deposition of MMHg through fog may be contributing to this pattern, as we also observed significantly higher MMHg concentrations in lace lichen (Ramalina menziesii), a deer food and a bioindicator of atmospheric deposition, at sites with the highest fog frequencies. At these ocean-facing sites, deer samples had significantly higher THg concentrations compared to those from more inland bay-facing sites. Our results suggest that fog-borne MMHg, while likely a small fraction of Hg in all atmospheric deposition, may contribute, disproportionately, to the bioaccumulation of Hg to levels that approach toxicological thresholds in at least one apex predator. As global mercury levels increase, coastal food webs may be at risk to the toxicological effects of increased methylmercury burdens.publishedVersio

    Fear of the human ‘super predator’ reduces feeding time in large carnivores

    Get PDF
    Large carnivores’ fear of the human ‘super predator’ has the potential to alter their feeding behaviour and result in human-induced trophic cascades. However, it has yet to be experimentally tested if large carnivores perceive humans as predators and react strongly enough to have cascading effects on their prey. We conducted a predator playback experiment exposing pumas to predator (human) and non-predator control (frog) sounds at puma feeding sites to measure immediate fear responses to humans and the subsequent impacts on feeding. We found that pumas fled more frequently, took longer to return, and reduced their overall feeding time by more than half in response to hearing the human ‘super predator’. Combined with our previous work showing higher kill rates of deer in more urbanized landscapes, this study reveals that fear is the mechanism driving an ecological cascade from humans to increased puma predation on deer. By demonstrating that the fear of humans can cause a strong reduction in feeding by pumas, our results support that non-consumptive forms of human disturbance may alter the ecological role of large carnivores
    corecore